HYPERBOLIC ORDINARINESS OF HYPERELLIPTIC CURVES OF LOWER GENUS IN CHARACTERISTIC THREE

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal hyperelliptic curves of genus three

Article history: Received 24 June 2008 Revised 29 January 2009 Available online 27 February 2009 Communicated by H. Stichtenoth This note contains general remarks concerning finite fields over which a so-called maximal, hyperelliptic curve of genus 3 exists. Moreover, the geometry of some specific hyperelliptic curves of genus 3 arising as quotients of Fermat curves, is studied. In particular, ...

متن کامل

Non-hyperelliptic curves of genus three over finite fields of characteristic two

Let k be a finite field of even characteristic. We obtain in this paper a complete classification, up to k-isomorphism, of non singular quartic plane curves defined over k. We find explicit rational normal models and we give closed formulas for the total number of k-isomorphism classes. We deduce from these computations the number of k-rational points of the different strata by the Newton polyg...

متن کامل

Generating Genus Two Hyperelliptic Curves over Large Characteristic Finite Fields

In hyperelliptic curve cryptography, finding a suitable hyperelliptic curve is an important fundamental problem. One of necessary conditions is that the order of its Jacobian is a product of a large prime number and a small number. In the paper, we give a probabilistic polynomial time algorithm to test whether the Jacobian of the given hyperelliptic curve of the form Y 2 = X+uX+vX satisfies the...

متن کامل

Hyperelliptic Curves in Characteristic 2

In this paper we prove that there are no hyperelliptic supersingular curves of genus 2n − 1 in characteristic 2 for any integer n ≥ 2. Let F be an algebraically closed field of characteristic 2, and let g be a positive integer. Write h = blog2(g + 1) + 1c, where b c denotes the greatest integer less than or equal to a given real number. Let X be a hyperelliptic curve over F of genus g ≥ 3 of 2-...

متن کامل

The modular variety of hyperelliptic curves of genus three

The modular variety of non singular and complete hyperelliptic curves with level-two structure of genus 3 is a 5-dimensional quasi projective variety which admits several standard compactifications. The first one comes from the period map, which realizes this variety as a sub-variety of the Siegel modular variety of level two and genus three H3/Γ3[2]. We denote the hyperelliptic locus by I3[2] ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyushu Journal of Mathematics

سال: 2019

ISSN: 1340-6116,1883-2032

DOI: 10.2206/kyushujm.73.317